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I. INTRODUCTION

In 1948, H. Casimir predicted the attraction between two
electrically neutral metallic mirrors due to the quantum fluc-
tuations of the electromagnetic field.1 The landmark result of
Casimir was later extended by Lifshitz to describe the inter-
action between matter, considering that it can be treated as a
continuum characterized by a dielectric function.2

The sign and strength of the Casimir force depend on the
geometry and properties of the involved materials.3 The
force between two planar uniform dielectric slabs standing in
a vacuum is always attractive. However, several physical
mechanisms may permit a repulsive force, and in particular
recently it was experimentally verified that the interaction
between two dielectric objects may be repulsive when they
are immersed in a liquid with a suitable dielectric constant.4

It has also been known for a long time that dielectric and
permeable �magnetic� bodies in a vacuum may repel each
other.5 Based on this, several works have studied the possi-
bility of using metal-dielectric metamaterials with exotic op-
tical properties to obtain a repulsive Casimir force, and pos-
sibly some form of nanolevitation.6–9 Such ideas require
nanostructuring a bulk dielectric or metal in order to tailor its
electromagnetic response. Particularly, it has been suggested
that the emergence of artificial magnetism or strong magne-
toelectric coupling may provide a route for Casimir repulsive
forces.6,7

In this paper, we theoretically demonstrate that the Ca-
simir force between two arbitrary planar nanostructured
metal-dielectric slabs is invariably attractive at any distance a
few times larger than the characteristic period of the arrays.
Moreover, we argue that if the structured slabs may be de-
scribed by a continuous material model �metamaterials� the
force is always attractive. Our proof is largely inspired in the
beautiful theorem of Ref. 10, which establishes that the Ca-
simir force between two arbitrary dielectric objects with mir-
ror symmetry is necessarily attractive.

II. CASIMIR INTERACTION ENERGY OF TWO
PERIODIC DIELECTRIC ARRAYS

In this section, we propose an extension of the scattering
�TGTG� formalism for the Casimir force introduced in Ref.
10 to the case of two bodies invariant to translations along
two given directions of space �periodic dielectric arrays�.
The developed theory will be used to demonstrate that when

the bodies are separated by a macroscopic distance, larger
than the characteristic features of the arrays, the Casimir
force is always attractive.

We consider two completely arbitrary structured materials
�Fig. 1� formed by the repetition of the unit cell �
=�T� �−� ,+�� where �T= ��x ,y�=�1a1+�2a2 : ��i��1 /2�
is the transverse unit cell and a1 and a2 are the primitive
vectors, which define the periodicity of both slabs in the xoy
plane. The region of space 0�z�d is a vacuum. The shape,
size, and material parameters of the inclusions in the regions
z�0 and z�d are completely arbitrary and are described by
a dielectric function �=��r ,	�. The intersection of � with
the semi-space z�0 �z�d� is denoted by A �B�. We do not
assume any form of translational invariance with respect to z
in these regions, and so the thickness of each slab can be
finite.

The zero-point energy of the system can be written in
terms of the resonant frequencies, 	n, of the system as: E
=�n

1
2
	n. Since we assume that the structure under analysis

is transverse periodic, it is clear that the eigenmodes can be
taken as Bloch-Floquet waves, associated with a transverse
wave vector k	 = �kx ,ky ,0�. Hence, we have that

E = �
k	

�
n

1

2

	n,k	

, �1�

where 	n,k	
are the resonant frequencies associated with the

Bloch eigenmodes with transverse wave vector k	. As shown
next, 	n,k	

are the zeros of some function D�	 ,k	�.

FIG. 1. �Color online� Two planar �transverse periodic� metama-
terial slabs formed by metal-dielectric inclusions stand in a vacuum
and are separated by a distance d. The framed region represents the
basic cell �.
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In fact, consider a generic Bloch-Floquet electromagnetic
mode characterized by the electric field E and associated
with a certain wave vector k	 and frequency 	. Thus, it sat-
isfies the homogeneous equation:

� � � � E − 
	

c
�2

E = 
	

c
�2

�E , �2�

where �=�−1 is the normalized electric susceptibility of the
inclusions, and c is the speed of light in vacuum. Let us

introduce the operator Ĝp= Ĝp�	 ,k	�= �����− 	2

c2 �−1 on
H�,k	

→H�,k	
, being H�,k	

the space of �square integrable�
vector fields defined over the unit cell that satisfy Bloch-
Floquet boundary conditions determined by k	 in the trans-
verse �x and y� coordinates. Then, Eq. �2� implies that a
generic Bloch electromagnetic mode satisfies the Lippmann-

Schwinger integral equation, �Î− 	2

c2 Ĝp�	 ,k	��̂�	��E=0.

Here, Î is the identity operator and �̂= �̂�	� represents a mul-
tiplication operator such that:

�̂E = ��r;	�E�r� �3�

The electric field in the Lippmann-Schwinger equation is
defined over the whole unit cell �. However, it is possible to
obtain a modified integral equation whose unknown is the
restriction E� of the electric field to the region �=A ,B. In-

deed, for an observation point r in A it is clear that, �ÎA

− 	2

c2 ĜAA�̂A�EA=EA
inc, where EA

inc is the field that illuminates
region A, i.e., the field radiated by the inclusions in region B:

EA
inc= 	2

c2 ĜAB�̂BEB. The subscripts of the operators indicate

their domain and range. For example, Ĝ�� is the restriction

on H�,k	
→H�,k	

of the operator Ĝp, being H�,k	
with �

=A ,B defined in a similar way as H�,k	
. Likewise, �̂� repre-

sents the restriction on H�,k	
→H�,k	

of the multiplication
operator �̂.

Clearly, since the roles of A and B can be interchanged, it
is possible to write two analogous equations for an observa-
tion point in region B. Using these equations to eliminate EB,
it can be easily shown that EA satisfies the following homo-
geneous integral equation

�ÎA − T̂AĜABT̂BĜBA��̂AEA = 0, �4�

where T̂� is a mapping on H�,k	
→H�,k	

defined by

T̂� = −
	2

c2 �̂�
Î� −
	2

c2 Ĝ���̂��−1

. �5�

Hence, we see that the dispersion characteristic of the
electromagnetic modes associated with the transverse wave
vector k	 may be formally written as D�	 ,k	�=0, with

D�	,k	� = det�ÎA − T̂AĜABT̂BĜBA� �6�

where “det” stands for the determinant of an operator.10 In
particular, the resonant frequencies 	n,k	

that determine the
zero point energy of the system are the zeros of D�	 ,k	� as
we wanted to show.

It is well known that the zero point energy of the system
is divergent.11 However, the interaction energy, which de-

scribes the variations of E with the distance d between the
two bodies, is finite and can be conveniently evaluated using
the argument principle, similar to the analysis of Refs. 12
and 13. Specifically, it can be easily shown that the contri-
bution of the quantum oscillators associated with a given k	

to the interaction energy can be written in terms of an inte-
gral over the axis of imaginary frequencies �	= i
� as fol-
lows:

�Ek	
=




2�
�

0

+�

ln D�i
,k	�d
 . �7�

The total interaction energy is obviously given by �E
=�k	

�Ek	
. We note that because of the periodicity of the sys-

tem the transverse wave vector may be assumed to be in the
first Brillouin zone, BZ= ��1b1+�2b2 : ��i��1 /2�. The al-
lowed values for k	 depend on the transverse area of the
slabs As �following the usual practice, it is assumed that the
region of interest is terminated with periodic boundary con-
ditions�. Hence, a straightforward analysis �see also the Ap-
pendix�, shows that the zero temperature Casimir interaction
energy per unit of area, �E /As, is given by:

�E
As

=



�2��3�
B.Z.

d2k	�
0

+�

d
 ln D�i
,k	� . �8�

We note that the Casimir interaction energy is written in
terms of the function D�	 ,k	� evaluated for imaginary fre-
quencies, whereas the zero-point energy of the system E is
determined by the real valued zeros of the same function.

As discussed, next the above formula corresponds to a
generalization of the scattering �TGTG� formula for the Ca-
simir interaction introduced in Ref. 10 to the case of a struc-
tured material periodic in the transverse �xoy� plane. Indeed,
suppose that we take the unit cell � as the whole space. It
can be easily checked that in such case all the arguments
used in the above derivation still hold, except that the sum-
mation over k	 must be suppressed, because when � is co-
incident with the whole space it does not make sense to talk
about Bloch modes. Thus, in such case the Casimir interac-
tion energy is written as in Eq. �7�:

�E =



2�
�

0

+�

ln D0�i
�d
 �9�

where D0�	�=det�ÎA− T̂0AĜ0ABT̂0BĜ0BA�. The operator Ĝ0

has formally the same expression as Ĝp, i.e., Ĝ0= Ĝ0�	�
= �����− 	2

c2 �−1, but it is defined over a different domain
and satisfies radiation boundary conditions at infinity �while

Ĝp satisfies Bloch-periodic boundary conditions in the trans-

verse directions�. The operator T̂0 is defined as in Eq. �5�,
except that Ĝ�� must be replaced by Ĝ0��. Equation �9� is
exactly the TGTG formula for the Casimir interaction energy
derived in Refs. 10 and 14 using a different approach. We
note that the theory of Refs. 10 and 14 assumes implicitly
that the bodies of interest are uniform ��A and �B are con-
stants�, whereas our formula is valid even for nonuniform
bodies. It is important to mention that for nonuniform bodies
�=��r ;	� and in that case the operators �̂� do not commute
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with the operators Ĝ��. In particular, the order of the opera-

tors in the definition of T̂ �Eq. �5�� is important.
Our derivation the TGTG scattering formula is based on

the argument principle and thus, strictly speaking, is only
valid in case of very low material losses �because only then
the resonance frequencies 	n,k	

are real valued�. However,
formula �8� can be as well derived using the theory of Ken-
neth and Klich �Eq. �9��, which applies even for lossy struc-
tures. This alternative derivation of Eq. �8� is presented in
Appendix.

It is interesting to note that the operators T̂� have a simple
physical meaning for 	 real valued. In fact, it should be clear

from our derivation, that T̂� relates the electric density of
current J�=−i	�0�E induced in region � with the corre-
sponding incident field E�

inc through the relation: J�

= 1
−i	�0

T̂�E�
inc. Notice that T̂� depends exclusively on the

properties of the body �. The interaction between the two

bodies is described by the operators ĜAB and ĜBA.

An important property of the operator Ĝp= Ĝp�	 ,k	� is
that it is periodic in k	. This follows immediately from the

fact Ĝp is defined over the space H�,k	
, which is coincident

with H�,k	+j1b1+j2b2
, where b1 and b2 are the primitive vectors

of the reciprocal lattice. In particular, this shows that the

operators Ĝ��, and thus also D�	 ,k	�, are periodic in k	.
Hence, even though in Eq. �8� the integration is done only
over the first Brillouin zone the information about all the
other zones is implicitly contained in D�	 ,k	�.

It is also useful to note that the action of Ĝp over a generic
vector field E can be written in terms of the Bloch-periodic

Green dyadic Gp
� =Gp

� �r ,r� ;	 ,k	� as follows:

ĜpE = �
�

Gp
� �r,r�;	,k	� . E�r��d3r� �10�

The Green dyadic Gp
� is determined by the radiation field of

an array of point sources in free space, and satisfies

� � � � Gp
� −

	2

c2 Gp
� = I� �

I=�i1,i2�
��r − r� − rI�eik	.�r−r��,

�11�

where rI= i1a1+ i2a2 is a generic lattice point. It is quite evi-

dent from the above relations that Ĝp is indeed a periodic
function of k	.

For future reference, we note that the Green dyadic Gp
�

can be written in terms of a scalar potential �p as follows:

Gp
� �r,r�;i
,k	� = 
I� −

c2


2 � ���p�r,r�� , �12�

where �p is a Bloch-periodic Green function that has the
following spectral representation �see for example, Ref. 15�:

�p�r,r�;i
,k	� = �
J=�j1,j2�

e−�J�z�−z�

2�JAcell
eikJ.�r−r��, �13�

where Acell= �a1�a2� is the area of the transverse cell, kJ
=k	 + j1b1+ j2b2, j1 and j2 are generic integers, and �J

=
kJ .kJ+
2 /c2.

III. ASYMPTOTIC BEHAVIOR OF THE OPERATORS AND
CONVERGENCE OF THE INTERACTION ENERGY

INTEGRAL

Here, we show that the integral in Eq. �8� is well defined
and yields a finite value for the Casimir interaction energy. A
somehow related discussion for the case in which the system
is not periodic is presented in Ref. 14.

To begin with, we note that in Eqs. �12� and �13� we have
�J�
 /c and thus, for r= �x ,y ,z� and r�= �x� ,y� ,z�� such that

z�0 and z��d, the Green dyadic Gp
� converges exponen-

tially to zero as 
→�. Using Eq. �10�, it should be clear that

this implies that the operators ĜAB and ĜBA converge as well
exponentially to zero as 
→�.

On the other hand, it is well known that because of the
passivity and causality of the materials,16 ��r ; i
��0 in the
dielectrics, and thus �̂� are nonnegative operators for imagi-
nary frequencies �i.e., �E��̂��E��0 for a generic vector field

E�. Hence, for 	= i
 we can write T̂� defined by Eq. �5�, as
follows:

T̂� = �̂�
1/2Ŝ��̂�

1/2 �14�

Ŝ� =

2

c2
Î� +

2

c2 �̂�
1/2Ĝ���̂�

1/2�−1

. �15�

It can be easily checked using Eq. �10� that Ĝ�� is self-

adjoint �Hermitian� for imaginary frequencies: Ĝ��= Ĝ��
† .

Since, �̂� is also evidently self-adjoint for imaginary fre-

quencies it follows that both T̂� and Ŝ� are self-adjoint for
	= i
.

We also note that Ĝp is positive definite for 	= i
, i.e.,

Ĝp�0. This follows from the fact that Ĝp
−1=����+ 
2

c2 is
obviously Hermitian and positive definite. Hence, we see

that c2


2 Ŝ� is a bounded positive operator, and in particular T̂�

has the same asymptotic behavior �for large 
� as ��
2 /c2.
But since the materials do not have an electric response for
very large �imaginary� frequencies,16 we also know that ��

→0. Hence, remembering that ĜAB and ĜBA converge expo-

nentially to zero, we finally conclude that T̂AĜABT̂BĜBA con-
verges as well exponentially to zero as 
→�. This property
ensures that the integral in Eq. �8� is well defined and is
convergent, as we wanted to show.

IV. M̂M̂† STRUCTURE

The TGTG formalism enables one to write in a formal
way the Casimir interaction energy in terms of the geometry
of the system and of the material parameters. In order to
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study the sign of the Casimir force, it is convenient to make
the dependence on the distance between the two bodies, d,
explicit in the definition of the operators.

To this end, we may assume for simplicity that the body A
is held fixed and study the variation of the interaction energy
as the position of the body B varies. Thus, the set B may be
regarded as a function of d, i.e., B=B�d�. As mentioned
above, we want to make the dependence of �E on d explicit,
and thus it is desirable that the domains and ranges of all the
operators are independent of d. Similar to Ref. 10, this can

be achieved by introducing a unitary operator Î :HC,k	

→HB,k	
such that ÎE=E�T−d .r�, where by definition C

�B�0� and Td is a mapping �translation� such that Td :r
→r+d and d=dẑ. The region C corresponds to the configu-
ration of the slab in the region z�0 when d vanishes. It can

now be easily checked that ĜABT̂BĜBA= ĜACT̂CĜCA, where

T̂C= Î†T̂BÎ= T̂B�0� and ĜAC= ĜABÎ. The operator ĜAC�i
 ,k	�
can be written explicitly as

ĜACE = �
C

Gp
� �r,r� + d;i
,k	� . E�r��d3r�. �16�

It can be easily shown that for imaginary frequencies, 	

= i
, we have that ĜCA= ĜAC
† . Hence, for 	= i
 we can write

D as follows:

D�i
,k	� = det�ÎA − T̂AĜACT̂CĜAC
† � . �17�

It is interesting to note that T̂A and T̂C are completely inde-
pendent of the distance between the bodies, and convey all
the information about their geometry and material param-

eters. On the other hand, the operator ĜAC, which describes
the electromagnetic wave propagation in a vacuum, is totally
independent of the geometry and permittivity of the materi-
als, and evidently depends on d, as shown explicitly in Eq.
�16�.

The determinant of a self-adjoint operator is equal to the
product of the respective eigenvalues. However, it can be

easily checked that ÎA− T̂AĜACT̂CĜAC
† does not have this

property. Despite this difficulty it is possible, as shown next,
to write D as the determinant of a self-adjoint operator.

Indeed, if Q̂ is a generic operator and P̂ is a nonnegative

operator P̂�0 we have that:20

det�ÎA − P̂Q̂� = det�ÎA − P̂1/2Q̂P̂1/2� . �18�

Using now Eq. �14� and the fact that �̂��0 for imaginary
frequencies �see Sec. III�, it is evident that D can be written
in terms of the determinant of an Hermitian operator as fol-
lows:

D�i
,k	� = det�ÎA − M̂M̂†� . �19�

In the above, M̂ = ŜA
1/2�̂A

1/2ĜAC�̂C
1/2ŜC

1/2, �̂C= �̂B�0�, and ŜA and

ŜC are defined as in Eq. �15�. To obtain Eq. �19� we took into

account that for 	= i
, Ŝ� are self-adjoint nonnegative opera-

tors, Ŝ��0.

The eigenvalues of the Hermitian operator M̂M̂† are such
that 0��i�i
 ,k	��1. The lower bound is evident, while the

upper bound can be justified by noting that the operator ĜAC,
which determines the interaction between the two slabs, de-

cays exponentially to zero as 
→�, and hence, M̂ has the
same property. Hence, for sufficiently large 
 the eigenvalues

of M̂M̂† are clearly less than unity. On the other hand, the

eigenvalues of ÎA−M̂M̂† �i.e., 1−�i� vary continuously with

, and cannot cross zero because this would imply that for
some 
�0 one would have D�i
 ,k	�=0, which is impossible
on physical grounds given that the zeros of D are associated
with the eigenmodes of the structure, and for passive mate-
rials these must necessarily occur for complex frequencies
such that Im�	��0. Therefore, the eigenvalues 1−�i must
have the same sign for all 
, and thus, must be positive real
numbers.

V. PROOF OF ATTRACTION AT MACROSCOPIC
DISTANCES

Using the theoretical formalism developed in the previous
sections, next we prove that when the distance between the
slabs is “macroscopic,” the Casimir force is necessarily at-
tractive. To begin with, we note that the only operator in the

definition of M̂ that depends on d is ĜAC, as shown explicitly
in Eq. �16�. Using Eqs. �12� and �13� it is obvious that the

kernel of the integral operator ĜAC is such that:

Gp
� �r,r� + d� = 
I� −

c2


2 � ���p�r,r� + d�

�p�r,r� + d� = �
J=�j1,j2�

e−�J�d+z�−z�

2�JAcell
eikJ.�r−r��. �20�

We took into account that z�−z�0 when r�A and r��C,

which is the case of interest because ĜAC is an operator on
HC,k	

→HA,k	
.

For k	 in the Brillouin zone the propagation constant �J
increases with J= �j1 , j2�. Thus, the term that contributes
mostly to the Green function �p is the one with J=0. More-
over, the contribution of the term associated with the index J
may be estimated as smaller than that of J=0 by a factor of
e−�kJ�d�e−�J�2�d/a, where a is the characteristic period �lattice
constant� of the transverse lattice. Hence, provided d is a few
times larger than a, let’s say d�d0, it follows that the con-
tribution of all terms with J�0 is negligible as compared to
that of J=0. Therefore, in such circumstances, we may write
with negligible error that:

�p�r,r� + d� � e−�0de−�0�z�−z�

2�0Acell
eik	.�r−r��. �21�

In particular, it follows that for d�d0 the operator ĜAC veri-

fies ĜAC�e−�0�d−d0�ĜAC,0, where ĜAC,0 is equal to ĜAC cal-

culated for d=d0. Likewise, for d�d0 the operator M̂ may

also be written as M̂ �e−�0�d−d0�M̂0, where M̂0=M̂ �d=d0
. This
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shows that the eigenvalues of M̂M̂† satisfy the relation:

�i�i
,k	� � e−2�0�d−d0��0,i�i
,k	� , �22�

where �0,i=�0,i�i
 ,k	� are the eigenvalues of M̂0M̂0
†. Since

the determinant of an Hermitian operator is equal to the
product of the respective eigenvalues, we find, using Eq.
�19�, that for d�d0,

ln D�i
,k	� = �
i

ln�1 − e−2�0�d−d0��0,i� . �23�

But, as proven in Sec. IV, the eigenvalues of M̂0M̂0
† satisfy

0��0,i�1, and thus it is trivial to check that the interaction
energy Eq. �8� increases with increasing d, i.e., for d�d0 the
Casimir force is attractive, being d0 some distance compa-
rable with the transverse lattice constant.

The derived results are exact if the structured materials
are uniform in the transverse directions, i.e., if �=��z ,	�.
Indeed, in such conditions we can choose the �transverse�
period a as small as we may wish, and in particular, letting
a→0 formula �21� becomes an exact identity. This is con-
sistent with the results of Ref. 17, which showed using an
approach related to ours that repulsion between two objects
is forbidden if one of them is an infinite slab with transla-
tional symmetry.

It is important to mention that our theory does not pre-
clude the possibility of repulsion between the two structured
slabs at distances comparable with the lattice constant �i.e.,
d�d0� when the material parameters depend on the trans-
verse coordinates. We will not attempt to give a mathemati-
cally rigorous upper bound for d0, since it depends in a com-
plicated manner on the geometry of the structured slabs.
However, we emphasize that the electromagnetic interaction
between the two slabs is completely described by the opera-

tor ĜAC, and that the approximation of Eq. �21� is very ac-
curate for imaginary frequencies when d is a few times larger
than the transverse period, being the estimated relative error
e−2�d/a. In fact, from a physical point of view the approxima-
tion of Eq. �21� is equivalent to say that the slabs cannot
sense the granularity of each other, so that the wave propa-
gation in the vacuum region is described by the dominant
Fourier harmonic with propagation constant �0

=
k	
2+ �
 /c�2. It is interesting to point out that typically the

main contribution to the Casimir interaction energy comes
from low values of 
 /c and values of k	 close to the center of
the Brillouin zone, because it is for those values that �0

=
k	
2+ �
 /c�2 is minimal and thus that the electromagnetic

interaction between the slabs is stronger.
Moreover, if the interaction between the periodically

structured slabs can be described using effective medium
theory it is clear that the bodies cannot sense the granularity
of each other in the x and y directions �otherwise effective
medium theory would not apply�, and hence also in these
conditions Eq. �21� is exact. Or in other words, if the con-
sidered metal-dielectric slabs behave as continuous media
�possibly characterized by some exotic effective parameters
in the real frequency axis�, the Casimir force is invariably
attractive. In fact, we would like to point out that the unusual
optical effects of a metamaterial such as optical magnetism

are a consequence of the structures it consists of �“inclu-
sions”�, and that such �near-field� interactions between the

inclusions are fully described by the T̂� operators, which are
treated without any approximation in our theory. On the
other hand, within the scope of any effective medium theory,
the interaction between the two slabs is intrinsically a far-
field interaction relative to the scale of the lattice constant

and is described by ĜAC. The fact that such interaction is
effectively in the far-field �relative to the scale of the trans-
verse lattice constant� justifies that we can indeed use the
approximation implicit in Eq. �21�, and implies that the Ca-
simir force is attractive.

It is also important to emphasize that the results of this
work apply only to displacements of the material slabs with
respect to a vacuum. This should be clear from the fact that
we are calculating the variation of the energy of the system
when the distance d between the slabs is changed, and in
both the initial and final configurations the space in between
the slabs is a vacuum �naturally, the system evolves to a
configuration that minimizes its energy�. However, the
theory does not preclude repulsion when the two bodies are
embedded in another material �e.g., a fluid�, which, as it is
well known,4,18 is physically possible.

In fact, consider the scenarios depicted in Fig. 2, which
represent several configurations of uniform dielectric slabs
with different permittivities. Our result forbids that regard-
less of the values of the permittivities �1, �2, and �3 the
system may evolve from configuration �a� to configuration
�c�, because the internal energy associated with configuration
�c� is greater than that of configuration �a�. However, very
importantly, the theory does not forbid that configuration �a�
evolves to configuration �b� when �1��2��3. In fact, such
transition corresponds to a displacement with respect to a
background material that is not a vacuum. Such displacement
may occur if the middle layer is a fluid �i.e., if the two slabs
�1, and �3 are embedded in a fluid�. Interestingly, the fluid
may be very well a metamaterial, even if the inclusions stand
in a vacuum! The key point is that in the transition �a�
→ �b� additional “inclusions” must be displaced into the
middle region to fill the extra space corresponding to the
displacement of the slabs.

Finally, we note that our result does not invalidate the
mechanisms of repulsion considered in either Ref. 6 or Ref.
9, because the former is based on active materials whereas
the latter is based on materials with intrinsic magnetism.
However, our theory opposes Ref. 7, which showed that the

�1 �2 �3 �1 �2 �3 �1 �2 �3�=1

1 2 3� � �� �1 2 3� � �� �(a) (b) (c)

FIG. 2. �Color online� Different configurations of uniform di-
electric slabs. The theory of this work forbids a transition �a�
→ �c�, but not a transition �a�→ �b�.
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interaction between two isotropic chiral metamaterials may
be repulsive for a sufficiently large chirality parameter. In
fact, at least as long as the material properties are obtained
by structuring either metals or dielectrics, the Casimir force
is certainly attractive at all macroscopic distances, and thus
when effective medium theory applies. In fact, the analysis
of Ref. 19 indicates that the large chirality parameter consid-
ered in Ref. 7 may be unphysical.

VI. CONCLUSION

In this work, we derived a generalized TGTG scattering
formula which applies to arbitrary transverse periodic metal-
dielectric systems. Using the developed theoretical formal-
ism, it was shown that the Casimir interaction between two
planar transverse periodic metal-dielectric structured slabs
separated by a vacuum is necessarily attractive at any mac-
roscopic distance.

The proof is based on the transformation of the TGTG

structure of Ref. 10 into an equivalent M̂M̂† structure. Such
transformation is only possible at imaginary frequencies 	

= i
, and relies on the fact that T̂��0, which is a conse-

quence of Ĝ�� and �̂� having the same property due to the

passivity and causality of the materials. The operators T̂�

describe the near-field interactions between the inclusions
and convey all the information about the effective optical
properties of the metamaterials. These operators are consid-
ered without any approximations in our theory. The last in-
gredient of the proof is the fact that in the “far-field” �with
respect to the transverse lattice constant� the Green function
cannot resolve the structure of the slabs, and hence the ap-
proximation Eq. �21� can be used to describe their interac-
tion.

The obtained result is valid at any distance provided the
material parameters are independent of the transverse x and y
coordinates. Moreover, the theory is also valid when the in-
teraction between the slabs can be described using effective
medium theory, so that the slabs do not see the granularity of
one another. Our theory restricts considerably the possibility
of obtaining Casimir repulsion by using metal-dielectric pla-
nar structured materials separated by a vacuum.
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APPENDIX: TGTG FORMULA FOR THE INTERACTION
BETWEEN TWO PERIODIC DIELECTRIC ARRAYS

Here, we use the theory of Kenneth and Klich10 to obtain
a alternative derivation of Eq. �8�. In our notations the TGTG
formula of Ref. 10 reads �all the operators are evaluated for
	= i
�:

�E =



2�
�

0

+�

d
 ln det�Î − T̂0AĜ0ABT̂0BĜ0BA� , �A1�

where T̂0�=− 	2

c2 �̂��Î�− 	2

c2 Ĝ0���̂��−1 and Ĝ0= �����

− 	2

c2 �−1. Formula �A1� cannot be directly applied to a periodic

system because in such case the number of objects is infinite,
and thus the interaction energy is also infinite. However, as
shown next, it is possible to calculate the interaction energy
per unit of area.

To this end, consider the geometry of the main text and
define the set �N= ��x ,y ,z�=�1a1+�2a2+zẑ : ��i��N /2,−�
�z�+�� where a1 and a2 are the primitive vectors of the
transverse lattice and N is a large integer number. It should
be clear that �N consists of exactly N�N primitive cells. In
order to calculate the Casimir interaction energy in �N we
can assume that �N corresponds to a “cavity” terminated
with periodic boundary conditions. Thus, the Casimir energy
in �N can be calculated using Eq. �A1� provided the set A
�B� is understood as the intersection of the region z�0 �z
�d� with �N, and in addition provided it is understood that
the domain of all the operators is H�N

, being H�N
the space

of square integrable vector fields that are periodic in �N.

Notice that the restriction of Ĝ0 to the space H�N
corre-

sponds to a Green function that verifies periodic boundary
conditions over the boundary of �N.

The key result is that H�N
can be written as the direct sum

of N�N subspaces as follows:

H�N
= H̃�,k	,1

� H̃�,k	,2
� . . . � H̃�,k	,N�N

, �A2�

where k	,i is a wave vector of the form k	 =
j1

N b1+
j2

N b2 with
j1 , j2=0 , . . .N−1, being b1 and b2 the primitive vectors of

the reciprocal transverse lattice. The vector space H̃�,k	,i
is a

subspace of H�N
such that its elements satisfy the Bloch-

Floquet condition �associated with the wave vector k	,i� in
the unit cell �. The important point is that because the ma-

terial is periodic, H̃�,k	,i
are eigensubspaces of the operator

Î− T̂0AĜ0ABT̂0BĜ0BA. Thus it follows that its determinant is
given by:

det�Î − T̂0AĜ0ABT̂0BĜ0BA�

= �
i

det��Î − T̂0AĜ0ABT̂0BĜ0BA�H̃�,k	,i
� , �A3�

where � . . . �H̃�,k	,i
represents the restriction of the operator to

the proper subspace H̃�,k	,i
. Notice that if Â is a generic op-

erator det�Â� can be seen as the determinant of its represen-
tation matrix with respect to some basis of the space. The

determinant of the restriction of Â to a proper subspace

H̃�,k	,i
is defined similarly, being the difference that now we

must consider a basis H̃�,k	,i
�instead of H�N

�. Thus, Eq. �A3�
merely states that the representation matrix of the operator
can be chosen such that its formed by block matrices distrib-
uted along the main diagonal, being each block matrix asso-
ciated with the restriction of the operator to a proper sub-
space.

Next, we note that it is possible to map the subspace H̃�,k	

into the subspace H�,k	
defined in Sec. II through a trivial

unitary transformation I : H̃�,k	
→H�,k	

such that for a ge-
neric vector field E one has IE=E ��. Notice that the sub-

MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 82, 085101 �2010�

085101-6



space H̃�,k	
is virtually the same as the subspace H�,k	

, being
the difference between them that in the former the vector
fields are defined over the set �N whereas in the latter they
are defined over �. A straightforward analysis shows that
I�Î− T̂0AĜ0ABT̂0BĜ0BA�H̃�,k	

I†= Î− T̂AĜABT̂BĜBA being T̂�

= T̂��	 ,k	� and Ĝ��= Ĝ���	 ,k	� the operators defined in Sec.
II. Therefore from Eq. �A3� we obtain that:

det�Î − T̂0AĜ0ABT̂0BĜ0BA� = �
i

det�Î − T̂AĜABT̂BĜBA�i
,k	,i
� .

�A4�

Substituting the above result into Eq. �A1� it is found that

�E =



2�
�
k	,i

�
0

+�

d
 ln det��Î − T̂AĜABT̂BĜBA��i
,k	,i
�

�A5�

Finally, we may let N→� and note that in such case the
summation over k	,i becomes an integral over the first Bril-
louin zone. Taking into account that the element of area in
the Brillouin zone is given by d2k	 =

�2��2

AcellN
2 , where Acell is the

area of the transverse unit cell in the space domain, and
noting that As=AcellN

2 is the area of structure’s cross-section
in �N we readily obtain Eq. �8�.
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